Repository logo
 

Design and implementation of an ETSI-SDR OFDM transmitter with power amplifier linearizer

Date

2010-09

Journal Title

Journal ISSN

Volume Title

Publisher

ORCID

Type

Degree Level

Masters

Abstract

Satellite radio has attained great popularity because of its wide range of geographical coverage and high signal quality as compared to the terrestrial broadcasts. Most Satellite Digital Radio (SDR) based systems favor multi-carrier transmission schemes, especially, orthogonal frequency division multiplexing (OFDM) transmission because of high data transfer rate and spectral efficiency. It is a challenging task to find a suitable platform that supports fast data rates and superior processing capabilities required for the development and deployment of the new SDR standards. Field programmable gate array (FPGA) devices have the potential to become suitable development platform for such standards. Another challenging factor in SDR systems is the distortion of variable envelope signals used in OFDM transmission by the nonlinear RF power amplifiers (PA) used in the base station transmitters. An attractive option is to use a linearizer that would compensate for the nonlinear effects of the PA. In this research, an OFDM transmitter, according to European Telecommunications Standard Institute (ETSI) SDR Technical Specifications 2007-2008, was designed and implemented on a low-cost Xilinx FPGA platform. A weakly nonlinear PA, operating in the L-band SDR frequency (1.450-1.490GHz), was used for signal transmission. An FPGA-based, low-cost, adaptive linearizer was designed and implemented based on the digital predistortion (DPD) reference design from Xilinx, to correct the distortion effects of the PA on the transmitted signal.

Description

Keywords

Predistortion, linearizer, ETSI, Satellite radio, OFDM

Citation

Degree

Master of Science (M.Sc.)

Department

Electrical Engineering

Program

Electrical Engineering

Committee

Citation

Part Of

item.page.relation.ispartofseries

DOI

item.page.identifier.pmid

item.page.identifier.pmcid